

    
      
          
            
  [image: Fresco logo]










FRESCO is a FRamework for Efficient and Secure COmputation, written in Java and licensed under the
open source MIT license. The project aims to ease the development of prototype applications based on
secure computation.

These pages briefly document the project. If you have questions not answered here please ask using
our issue tracker [https://github.com/aicis/fresco/issues] on GitHub or by email at
fresco@alexandra.dk.

The FRESCO source code is available at https://github.com/aicis/fresco.


Contents:



	Introduction
	What is Secure Computation?

	Main Features of FRESCO

	Contact

	Related Projects





	Installation
	Building FRESCO from Source

	Using the Latest FRESCO Release

	FRESCO in a Docker Container





	Quickstart
	A Simple Example

	A Little Explanation





	Protocol Suites
	The Dummy Boolean and Arithmetic  Protocol Suites

	The TinyTables Protocol Suite

	The SPDZ Protocol Suite

	The SPDZ2k Protocol Suite

	References





	Contributing
	Pull Requests





	For Developers
	Directory Structure

	Developing using an IDE

	Code Style

	Testing

	Building the Documentation













          

      

      

    

  

    
      
          
            
  
Introduction

FRESCO is a FRamework for Efficient Secure COmputation. It is designed to make it easy and efficient
to write prototype applications based on secure computation.


What is Secure Computation?

Secure computation (also known as Multi-Party Computation (MPC) or Computation on Encrypted Data
(CoED)) is an emerging cryptographic tool that allows a number of parties to securely collaborate
based on private data. More specifically, secure computation allows to jointly compute functions of
private data from multiple parties, without revealing the underlying private data.

As an example consider the classic Millionaires Problem: Two millionaires meet on the street and
want to decide who is the richest of the two. However, they fear embarrassment if they find that one
millionaire is much poorer than the other. The millionaires can solve this problem by comparing
their fortunes using secure computation to guarantee that they learn only who is the richest and
no additional data is revealed. Furthermore, they can do so directly between each other, without
having to involve any third parties.

In general any computable function can be computed privately using secure computation. To give a few
examples the FRESCO framework has been used in prototypes to


	Compute statistical data from surveys without revealing the individual survey answers (in PRACTICE [https://practice-project.eu/]).

	Benchmark the financial and energy performance of companies while keeping private the performance
data of the individual company (in the PRACTICE [https://practice-project.eu/] and Big Data by Security [https://bigdatabysecurity.dk/]  projects respectively).

	Let banks credit rate potential customers without revealing the private data of the customers or
the private credit rating functions of the bank (in the Big Data by Security [https://bigdatabysecurity.dk/] project).



For more information on secure computation see Wikipedia [https://en.wikipedia.org/wiki/Secure_multi-party_computation].




Main Features of FRESCO

The FRESCO framework aims to support the development of both new applications using secure
computation, and the development of new secure computation techniques (referred to as protocol
suites in FRESCO) to be used as the backend for those applications. In some sense FRESCO can be
thought of as a hub that provides the infrastructure to connect applications with protocol suites.
The framework puts focus on the following main features:


	Rapid and simple application development. With FRESCO you can write applications that use
secure computation without being an expert in cryptography. You only need to specify which data to
“close” and which data to “open”. FRESCO provides a standard library of many commonly used
secure functionalities. These can be easily combined in order to quickly achieve new complex
functionalities for use in applications. Once you have written your application, you can run it
using different kinds of protocol suites. This is important, since each suite comes with its
own specific security level and performance, and you may not even know which kind of security is
required at the time you write your application.

	Rapid and simple protocol suite development. FRESCO provides a collection of reusable patterns
and components that allows protocol suites to be developed with minimal effort. Once you have
developed your protocol suite, you immediately get the benefit that many existing applications
(and tests) can run on top of your new suite.

	Open and flexible design. FRESCO provides great freedom regarding the way you implement your
applications and protocol suites. Applications can, e.g., be specified in Java, or as a textual
representation of a circuit. Protocol suites have full freedom and control over things such as
thread scheduling and networking. It is even possible, using JNI, to write your protocol suite in
C/C++ and still get the benefit of access to many existing applications written using FRESCO.

	Support for large and efficient computations. FRESCO supports techniques such as
parallelization and pre-processing that enable scaling to large computations.






Contact

If you have any comments, questions or ideas, feel free to contact the
FRESCO development team either by dropping a mail to
fresco@alexandra.dk or by using our issue tracker [https://github.com/aicis/fresco/issues] at GitHub.




Related Projects

For further projects related to secure computation we refer to the Awesome-MPC [https://github.com/rdragos/awesome-mpc] list.







          

      

      

    

  

    
      
          
            
  
Installation

FRESCO is designed to run on Linux, MacOS, and Windows. The following installation guide is tested
on Linux and MacOS.


Building FRESCO from Source

The preferred way to install FRESCO is by building it from the latest source from GitHub. This way
you get all the latest additions to FRESCO. To do this, make sure you have installed git [http://git-scm.org], Java 8 [http://java.com], and Maven [https://maven.apache.org/].

Then in a terminal run:

git clone https://github.com/aicis/fresco.git
cd fresco
mvn install





This will download the FRESCO source code and dependencies, compile all the FRESCO modules, and run
the test suite. On a successful build Maven should install the FRESCO modules on your system and a
JAR file can now be found in the ./target directory of each corresponding module, as well as in
your local Maven repository. Note, that the test suite executed on mvn install can take several
minutes. To skip the tests and only run the build, use mvn install -DskipTests.

If you use Maven for your project you can then use a FRESCO module by adding it as a dependency in
your projects POM file. E.g., to use the core module add the dependency

<dependency>
  <groupId>dk.alexandra.fresco</groupId>
  <artifactId>core</artifactId>
  <version>1.0.1-SNAPSHOT</version>
</dependency>





possibly incrementing the version number to the current version.


	In order to use one of the protocol suites in your project, you cat add it

	as a dependency as well. For instance, if you want to use the SPDZ protocol suite, your POM file
will need to include:



<dependency>
  <groupId>dk.alexandra.fresco</groupId>
  <artifactId>spdz</artifactId>
  <version>1.0.1-SNAPSHOT</version>
</dependency>








Using the Latest FRESCO Release

If you prefer to install a released version of FRESCO you can get the source from the release
site https://github.com/aicis/fresco/releases, and run mvn install as described above.

Alternatively If your project uses Maven you could just add the dependency to your projects POM file
and have Maven download the dependency from the Central Repository. E.g., to use a release version
of the core and spdz modules add the dependencies

<dependency>
  <groupId>dk.alexandra.fresco</groupId>
  <artifactId>core</artifactId>
  <version>1.0.0</version>
</dependency>

<dependency>
  <groupId>dk.alexandra.fresco</groupId>
  <artifactId>spdz</artifactId>
  <version>1.0.0</version>
</dependency>





possibly adjusting the version tag to the desired version.




FRESCO in a Docker Container

If you use Docker and would prefer to work with FRESCO in a Docker container, we have made a docker
image available which you can run using

docker run -it frescompc/fresco





If you would like to build the docker image yourself we have included the Dockerfile in the root
of the repository. To build the image simply clone the repository (as above) and run

docker build -t fresco .





To run the container interactively using the image run

docker run -it fresco











          

      

      

    

  

    
      
          
            
  
Quickstart

This section gives a brief introduction on how to start working with FRESCO. If you have further
questions please get in touch using our issue tracker [https://github.com/aicis/fresco/issues] or
by email at fresco@alexandra.dk.

The best place to start is to browse the demos bundled with the FRESCO repository at
https://github.com/aicis/fresco/tree/master/demos.

The following demos are currently included:


	Sum [https://github.com/aicis/fresco/tree/master/demos/sum] - computes the sum of a number of
integers input by a single party.

	Distance [https://github.com/aicis/fresco/tree/master/demos/distance] - computes the distance
between two points provided by two different parties (in Euclidean two dimensional space).

	Aggregation [https://github.com/aicis/fresco/tree/master/demos/aggregation] - computes the aggregation
of a hard-coded list. The list consists of pairs of (key,value). The demo aggregates all values
where the keys match.

	AES [https://github.com/aicis/fresco/tree/master/demos/aes] - computes an AES encryption of a
block of plain-text provided by one party under a key provided by an other party.

	Private Set Intersection [https://github.com/aicis/fresco/tree/master/demos/psi] - computes the
intersection of the private sets of two parties.



Each demo includes instructions on how to build and run them directly on the command line.

The demos should hopefully give you a sense of how secure computation is specified in FRESCO. To get
started on your own applications you should also have a look at the various classes implementing the
ComputationDirectory interface which gathers various generic functionality implemented in FRESCO
which can be combined to realize more complex functionality. Specifically consider Numeric
and AdvancedNumeric for arithmetic and Binary and AdvancedBinary for Boolean based
secure computation.


A Simple Example

In this example we demonstrate how to use the FRESCO framework in your own application. FRESCO is a
flexible framework intended to be used in your own software stack, so start by adding the dependency
to fresco in your own project.

This example is based on the DistanceDemo class implementing the Distance demo outlined
above. However, essentially any FRESCO application could be substituted for DistanceDemo in the
following.

DistanceDemo distDemo = new DistanceDemo(1, x, y);
Party me = new Party(1, "localhost", 8871);
DummyArithmeticProtocolSuite protocolSuite = new DummyArithmeticProtocolSuite();
SecureComputationEngine<DummyArithmeticResourcePool, ProtocolBuilderNumeric> sce =
    new SecureComputationEngineImpl<>(
        protocolSuite,
        new BatchedProtocolEvaluator<>(new BatchedStrategy<>(), protocolSuite));
BigInteger bigInteger = sce.runApplication(
    distDemo,
    new DummyArithmeticResourcePoolImpl(1, 1),
    new KryoNetNetwork(new NetworkConfigurationImpl(1, Collections.singletonMap(1,
        me))));
double dist = Math.sqrt(bigInteger.doubleValue());





Here we take the existing application, DistanceDemo, and run it with a single party using the
dummy protocol suite. This can run directly in your own tests.

Congratulations on running your first FRESCO application!

If you want to see this run with multiple parties, the above example can be modified to include two
parties running on the same machine.

DistanceDemo distDemo = new DistanceDemo(1, x, y);
Party partyOne = new Party(1, "localhost", 8871);
Party partyTwo = new Party(2, "localhost", 8872);
DummyArithmeticProtocolSuite protocolSuite = new DummyArithmeticProtocolSuite();
SecureComputationEngine<DummyArithmeticResourcePool, ProtocolBuilderNumeric> sce =
    new SecureComputationEngineImpl<>(
        protocolSuite,
        new BatchedProtocolEvaluator<>(new BatchedStrategy<>(), protocolSuite));
HashMap<Integer, Party> parties = new HashMap<>();
parties.put(1, partyOne);
parties.put(2, partyTwo);
BigInteger bigInteger = sce.runApplication(
    distDemo,
    new DummyArithmeticResourcePoolImpl(myId, 2),
    new KryoNetNetwork(new NetworkConfigurationImpl(myId, parties)));
double dist = Math.sqrt(bigInteger.doubleValue());








A Little Explanation

Let’s have a look at each part of the example above.

A FRESCO application, in this case DistanceDemo, implements the Application interface. To
run an Application we must first create a SecureComputationEngine. This is a core component
of FRESCO that is the primary entry point for executing secure computations through the computation
directories and the active protocol suite.

The SecureComputationEngine is initialized with a ProtocolSuite and a ProtocolEvaluator
(defining the secure computation technique and strategy for evaluating the application
respectively). In this case we are using the DummyArithmeticProtocolSuite with the
BatchedProtocolEvaluator.

To run an Application, we also need a ResourcePool and a Network. A ResourcePool is
controlled by you, the application developer and is a central database of resources that the suite
needs. The Network is the interconnected parties participating in the secure computation. By
default FRESCO uses a Network implementation based on KryoNet [https://github.com/EsotericSoftware/kryonet] as the network supplier, but you can create your own
and use that if this matches your application better.

When we call runApplication the SecureComputationEngine executes the application and returns
the evaluated result directly in a BigInteger - here the distance between the two points.

Notice how our Application is created. Implementing Application signals that our
DistanceDemo class is a FRESCO application. An application must also state what it outputs as
well as what type of application this is i.e. are we creating a binary or arithmetic application.
This is seen in the interface

public interface Application<OutputT, Builder extends ProtocolBuilder> extends Computation<OutputT, Builder>





The output type can be anything you want. In our case it is a BigInteger. The builder type we
use here is a numeric type since the DistanceDemo computation works with numeric protocol
suites. Since the Application interface extends the Computation interface, this requires us
to implement the method

DRes<BigInteger> buildComputation(ProtocolBuilderNumeric producer)





This is the method that defines how our FRESCO application is built. The DRes return type
represents a deferred result for the output (modeling that everything in FRESCO is evaluated
“later”).







          

      

      

    

  

    
      
          
            
  
Protocol Suites

Various techniques for secure computation are currently known. In the literature these are referred
to as secure computation protocols. However, as these usually consist of a number of sub-protocols
in FRESCO we use the term protocol suites to avoid ambiguity. I.e., in FRESCO a protocol suite is
taken to be a set of sub-protocols that as a collection implements general secure computation.

FRESCO is designed to work with multiple interchangeable protocol suites and aims to support the
development of new protocol suites. FRESCO also comes with a few protocol suites already
implemented. The following table gives a rough comparison of the currently included protocol suites.










	Suite
	Parties
	Adversary
	Model of Computation
	Reactive




	Dummy Boolean
	1+
	none
	Boolean
	yes


	Dummy Arithmetic
	1+
	none
	Arithmetic
	yes


	TinyTables
	2
	semi-honest
	Boolean
	yes


	SPDZ
	2+
	malicious
	Arithmetic
	yes


	SPDZ2k
	2+
	malicious
	Arithmetic
	yes





Here the Parties column describes the number of parties that can be involved in secure computation
using the given protocol suite. Adversary describes the type of adversary the protocol suite
tolerates. The Model of Computation describes how the protocol represent the computation to be
securely computed. Currently, protocol suites in FRESCO are tied to a single model of computation, i.e.,
the SPDZ suite only supports Arithmetic computations and does not support Boolean computations. Finally,
a protocol suite being reactive means that it allows intermediate values to be opened, and further
secure computation may continue on closed values that depend on the values opened so far.

Below we will describe the protocol suites in a little more detail.


The Dummy Boolean and Arithmetic  Protocol Suites

The dummy suites do all computations in the clear and thus provide no security at all. These
suites are intended for testing and debugging. Contrary to other protocol suites they can run with
only one party.

The dummy suites are also useful for benchmarking: The overhead of the dummy suite can be seen as
the baseline overhead of FRESCO when no security is applied.




The TinyTables Protocol Suite

The TinyTables protocol suite is based on work by Damgård et al. [DNNR17]. This protocol suite
works in the Boolean setting, with exactly two parties and the original protocol comes in versions
that provide security against both a semi-honest and malicious adversary. The version currently
implemented in FRESCO, however, only implements security against semi-honest adversaries.

TinyTables uses a simple technique to preprocessing the function to be evaluated before the input is
known. This preprocessing involves creating a small table of values for each AND gate involved,
hence the name TinyTables. Online evaluation is reduced to a lookup into such a table for each
AND gate with minimal communication overhead. As with other Boolean protocol suites, TinyTables
evaluates XOR’s locally without communication.




The SPDZ Protocol Suite

The SPDZ suite is based on another work of Damgård et al. [DPSZ12]. This protocol suite works
over a finite field of size at least \(2^s\) where s is a statistical security parameter.
I.e., it works in the arithmetic setting. SPDZ allows for two or more parties to participate in the
secure computation and is secure against malicious adversaries.

SPDZ is based on additive secret sharing over the given finite field. It requires a preprocessing
step to produce so called Beaver Triples which will be used online to evaluate multiplications.
Contrary to TinyTables, SPDZ preprocessing is not directly dependent on the function to be evaluated
online beyond the number of multiplications to be performed. In the online evaluation, SPDZ uses the
preprocessed data to evaluate each multiplication with a small amount of communication, whereas
addition can be done locally.




The SPDZ2k Protocol Suite

The SPDZ2k protocol suite is based on a variant of SPDZ due to Cramer et al. [CDESX18]. In
contrast to the regular SPDZ protocol which works over a field SPDZ2k works over the ring
\(Z_{2^k}\) for some \(k\). This is an advantage as working in such a ring more closely
resembles how arithmetic on the integers behaves in normal programming languages and it allows for
various optimizations compared to working over a field.

The current implementation supports all numeric native protocols, however there are higher level
computations (for instance equality and comparison) which it is not yet compatible with. Support
for those is forthcoming.




References


[DNNR17]:

Ivan Damgård, Jesper Buus Nielsen, Michael Nielsen and Samuel Ranellucci

The TinyTable Protocol for 2-Party Secure Computation, or: Gate-Scrambling Revisited

CRYPTO 2017







[DPSZ12]:

Ivan Damgård, Marcel Keller, Enrique Larraia, Valerio Pastro, Peter Scholl and Nigel P. Smart

Practical Covertly Secure MPC for Dishonest Majority – Or: Breaking the SPDZ Limits

ESORICS 2013







[CDESX18]:

Ronald Cramer, Ivan Damgård, Daniel Escudero, Peter Scholl, and Chaoping Xing

SPDZ_2^k: Efficient MPC mod 2^k for Dishonest Majority

Unpublished












          

      

      

    

  

    
      
          
            
  
Contributing

We will be happy to accept contributions to the FRESCO framework. Contributions could include:


	Feedback - Whether you have a question on FRESCO, a suggestion for new additions or
noticed a bug in the framework, any feedback is a valuable contribution.

	Documentation - Any improvements or additions you may have to the documentation found on these
pages are very welcome. For more on how to work on the
documentation, see here.

	Code - We will be very happy to include well-written code that is compliant with the overall
FRESCO design. This could be bug fixes, new protocol suites, generic functionality fitting the
FRESCO standard library or improvements to the core framework etc. For more on how to work with
the FRESCO code see here.



We encourage you to use our issue tracker [https://github.com/aicis/fresco/issues] to provide
feedback or discuss any other contributions you would like to make. Alternatively, you can contact
us at fresco@alexandra.dk.


Pull Requests

The easiest way to contribute code or documentation is to send us a pull request on GitHub. Please
follow these steps:


	Create an issue related to your planned contribution on the issue tracker [https://github.com/aicis/fresco/issues].

	Create a fork of the FRESCO repository (find directions at http://github.com/aicis/fresco).

	Make your changes to the new fork.

	Make a Pull Request at GitHub.



Before being merged into the project your pull request will be reviewed by the FRESCO team. To ease
this process, please keep your pull requests focused on the issue being solved. Also,
please give the pull request an informative title and description, preferably with references to the
issues related to the request (see
https://help.github.com/articles/autolinked-references-and-urls/#issues-and-pull-requests).







          

      

      

    

  

    
      
          
            
  
For Developers

In this section we give some tips and guidelines for developing and contributing code to FRESCO.


Directory Structure

The FRESCO root directory (see https://github.com/aicis/fresco) contains a number
sub-directories containing multiple sub-projects for FRESCO. Here we describe the most important
directories:


	core [https://github.com/aicis/fresco/tree/master/core] - contains the core FRESCO
framework including the application interface, library of generic functionality and dummy suites.

	demos [https://github.com/aicis/fresco/tree/master/demos] - contains a number of demos
demonstrating how FRESCO can be used. Each demo has its own sub-project.

	doc [https://github.com/aicis/fresco/tree/master/doc] - contains the source of the documentation for this site.

	suite [https://github.com/aicis/fresco/tree/master/suite] - contains the protocol suites implemented in FRESCO each as its own sub-project.

	tools [https://github.com/aicis/fresco/tree/master/tools] - contains various tools used in FRESCO each as its own sub-project.



We use Maven [https://maven.apache.org/] to manage FRESCO, and within each sub-project we use
the standard Maven directory structure.




Developing using an IDE

The FRESCO team (mostly) uses Eclipse [https://www.eclipse.org/] to develop FRESCO. To develop
using Eclipse, first check out a fork of FRESCO from GitHub. Then to import FRESCO into Eclipse
choose

File > Import... > Maven > Existing Maven Projects





and select the FRESCO root directory.

To help conform to the code style used in FRESCO, as described in the Code Style section, we
recommend installing the Checkstyle plugin for Eclipse and configuring it to use the Google style.
This plugin can also be used to generate a code formatter for Eclipse. To ensure imports are ordered
correctly, you may also need to go to

Eclipse > Preferences... > Java > Code Style > Organize Imports





and delete all groups in the list displayed (as the Google style dictates that all imports
must be in a single block).

To help fulfill the code coverage goal described in Testing we also recommend installing the
Jacoco plugin. This eases checking code coverage on your changes locally.

Alternatively some IntelliJ support is also present - look for the .idea files in the root of the
repository.




Code Style

To keep the code style consistent we use the style defined by Google [https://google.github.io/styleguide/javaguide.html]. We prefer to keep the code from generating
compile warnings, using the @SuppressWarnings annotation sparingly in case of unavoidable warnings.




Testing

We use JUnit4 [http://junit.org/junit4/] for testing. We use the Travis [https://travis-ci.org/aicis/fresco] tool to continuously check that all code committed to the
repository compiles and passes all tests. We strive for 100% test coverage of the FRESCO code and
use the Codecov [https://codecov.io/gh/aicis/fresco] tool to automatically check that new
patches have 100% coverage and do not decrease the overall test coverage.

For each sub-project tests are located in the source code folder named test separated from the
main code, as per the standard Maven directory structure. When writing tests for something in
package x.y.z the test should belong to the same package. This way, methods that are
package private and therefore not exposed in the FRESCO API can also be tested.

We work with two classes of tests:


	Regular tests. These should be fast and not rely on any external dependencies such as a server
already running. I.e., it should always possible to check out the code and just run these tests
with only meeting the requirements seen in the install section.



	Integration tests. These are tests that for example rely on external databases being set up, or
involve deployment to different hosts. You can mark a test class or test method as integration
test by using the @Category annotation like so:

@Test @Category(IntegrationTest.class) public void testSomething() { // Your test goes here. }









Integration tests are ignored when you the FRESCO tests suite using the Maven command

mvn test





but are included when you run

mvn integration-test





A few good practices regarding tests:


	Write tests.

	Don’t delete, comment, or @Ignore tests unless you really know what you are doing.

	Make sure that tests are independent of each other.

	Tests should be deterministic. Use a pseudo-random generator with a fixed seed if you need
randomness.

	Working tests should be silent when they work. Use log level Level.FINE if needed.




Writing Tests for a Protocol Suite

If you are developing a new protocol suite you may want to write tests in the same way as the tests
for suites that are already included in FRESCO. Consider, e.g., the SPDZ suite. A helper method is
made:

protected void runTest(TestThreadRunner.TestThreadFactory f, EvaluationStrategy evalStrategy,
      NetworkingStrategy network, PreprocessingStrategy preProStrat, int noOfParties) throws Exception





The first argument to runTest is a TestThreadFactory which defines which logic should be
tested. It is a factory that provides threads for each party in the test. If the protocol to test is
symmetric, each thread is identical. The test framework makes sure that each thread has access to
its own partyId so if the test requires the parties to do different things, they can branch on
their partyId.

The rest of the arguments to runTest are parameters over which you want your tests to vary. For
example this could be the number of players and evaluation strategy. But it can also include parameters
specific to your suite. The runTest should set up the remaining parameters for your test –
those parameters that should remain fixed in all your tests.

Then create a number of small tests, like the following:

@Test
public void test_MultAndAdd_Sequential() throws Exception {
  runTest(new BasicArithmeticTests.TestSimpleMultAndAdd(), EvaluationStrategy.SEQUENTIAL,
    NetworkingStrategy.KRYONET, PreprocessingStrategy.DUMMY, 2);
  }





It is fine to let the name reflect the specific parameters used in the test. Note how we use a
generic test here: The test BasicArithmeticTests.TestSimpleMultAndAdd can be used to test
multiplications and additions for any protocol suite that supports basic arithmetic operations, so
there is no need to rewrite such tests. Only write your own specific tests if you need to test some
specific functionality of your suite that no other suite has, otherwise consider making the test
generic such that it can be reused by others.

Writing many small tests like this makes it easy to decide later which of the tests to include. The
“unit” test suite should be relatively quick and not require external setup. If it depends on such
things, mark it with @Category(IntegrationTest.class).






Building the Documentation

The documentation will be built automatically and uploaded to fresco.readthedocs.org [http://fresco.readthedocs.org] when new changes are pushed to the repository. Before committing
changes to the documentation, it is a good idea to build the documentation locally and check that it
looks ok. This can be done as follows.

Building the docs requires Sphinx to be installed. A good way to do this is by using virtualenv.
Using virtualenv installs Sphinx in a local folder that can be easily removed, and it ensures that
the installation does not have any side effects: Go to the doc folder. Then create a new virtual
environment:

virtualenv env
source ./env/bin/activate
pip install -r requirements.txt





If the install fails, you might have to update pip. Just follow the directions pip gives you. This
only needs to be done once. When done, you can activate the virtual environment just by doing:

source ./env/bin/activate





Once activated, you can build documentation with:

make html





On Mac OS X you may need to set the following environment variables:

export LC_ALL=en_US.UTF-8
export LANG=en_US.UTF-8





You can enter the two lines directly in your terminal or to add them to your ~/.bash_profile.

Once built, you can view the result, open the file doc/build/html/index.hmtl with a web browser.







          

      

      

    

  

    
      
          
            

Index



 




          

      

      

    

  

    
      
          
            
  
Standard Library

FRESCO contains various functions which can be used freely as part of a secure
computation application. We have split the functions into two groups: binary and
arithmetic functions. This means that an application has to state which type of
application it is: binary or arithmetic.

The library contains at least these functionalities, but others may have been
added later, so be sure to check the ProtocolBuilderBinary and the
ProtocolBuilderNumeric classes for additions if you cannot find what you
need here.


Binary functions

Apart from the basic functionalities that a binary protocol suite has to
implement (AND, XOR, NOT, random bit, input, output), FRESCO provides the
following binary functions:

Advanced Functions


	OR

	XNOR

	NAND

	Conditional Select
	Choose either bit a or b from a given choice bit c.





	1-bit half adder

	1-bit full adder

	Full adder
	Computes a+b where a and b are numbers represented by bits





	Multiplication
	Computes a*b where a and b are numbers represented by bits





	Log (base 2)

	BitIncrement
	Increments a number represented by bits by 1





	Keyed compare and swap
	Compares the keys of two key-value pairs and produce a list of pairs such
that the first pair has the largest key.







Comparison


	Greater Than
	Computes a > b where a and b are numbers represented by bits





	Equal
	Computes a == b where a and b are numbers represented by bits







Bristol

Applications described by Bristol [https://www.cs.bris.ac.uk/Research/CryptographySecurity/MPC/] and parsed
within FRESCO.


	32x32 mutliplication

	AES

	SHA1

	SHA256

	DES

	MD5



Debug


	Open and print
	Opens a secret shared boolean/list of booleans and prints them along with a
chosen message once evaluation reaches this function





	Marker
+ Prints a message when evaluated






Arithmetic functions

Apart from the basic functionality that any arithmetic protocol suite needs to
implement (+, -, *, random bit, random element, input, output), FRESCO provides
the following functions for arithmetic applications:

Advanced Functions


	Sum
	Computes the sum of a list of numbers





	Product
	Computes the product of a list of numbers





	Division

	Modulus

	ToBits
	Converts a number into it’s bit representation





	Exponentiation

	Square root

	Natural Log

	Dot product

	Right shift

	Right shift with remainder

	Bit length
	Computes the bit length of a secret shared number. Needs to know the maximum
bit length of the number.





	Invert



Comparison


	Equal

	LEQ

	Compare to zero

	sign



Debug


	Open and print
	Opens a secret shared number/list of numbers/matrix of numbers and prints
them along with a chosen message once evaluation reaches this function





	Marker
+ Prints a message when evaluated









          

      

      

    

  _static/comment-bright.png





_static/comment-close.png





_static/ajax-loader.gif





_static/down.png





_static/comment.png





_static/down-pressed.png





_static/file.png





_static/minus.png





_static/plus.png





nav.xhtml

    
      Table of Contents


      
        		
          Contents:
        


        		
          Introduction
          
            		
              What is Secure Computation?
            


            		
              Main Features of FRESCO
            


            		
              Contact
            


            		
              Related Projects
            


          


        


        		
          Installation
          
            		
              Building FRESCO from Source
            


            		
              Using the Latest FRESCO Release
            


            		
              FRESCO in a Docker Container
            


          


        


        		
          Quickstart
          
            		
              A Simple Example
            


            		
              A Little Explanation
            


          


        


        		
          Protocol Suites
          
            		
              The Dummy Boolean and Arithmetic  Protocol Suites
            


            		
              The TinyTables Protocol Suite
            


            		
              The SPDZ Protocol Suite
            


            		
              The SPDZ2k Protocol Suite
            


            		
              References
            


          


        


        		
          Contributing
          
            		
              Pull Requests
            


          


        


        		
          For Developers
          
            		
              Directory Structure
            


            		
              Developing using an IDE
            


            		
              Code Style
            


            		
              Testing
              
                		
                  Writing Tests for a Protocol Suite
                


              


            


            		
              Building the Documentation
            


          


        


      


    
  

_static/up.png





_static/up-pressed.png





